Implicit Syntax for Targeted Sentiment Analysis

Yuze Gao, Yue Zhang and Tong Xiao

November 27, 2017, TaiWan

Outline

- Background
- Our Method
- Experiments and Results
- Conclusion

Outline

- Background
- Our Method
- Experiments and Results
- Conclusion

- Targeted Sentiment Analysis
 - Given a sentence s_n with target words t_m , we judge the sentiment(positive, negative, neutral) of the sentence towards the target words t_m .
 - Target Context (Duy-Tin Vo and Yue Zhang 2015)

- Baselines:
 - Vo and Zhang (2015)

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent twitter sentiment classification with rich automatic features. In *IJCAI*. pages 1347–1353

- Baselines:
 - Zhang et al. (2016)

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016. Gated neural networks for targeted sentiment analy- sis. In AAAI. pages 3087–3093.

- Baselines:
 - Tang et al. (2016)

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. 2016. Effective lstms for target-dependent sentiment classification. In *COLING*. pages 3298–3307.

- Baselines:
 - Liu and Zhang (2017)

Jiangming Liu and Yue Zhang. 2017. Attention mod-eling for targeted sentiment. EACL 2017 page 572.

- Baselines:
 - Results

	Acc.(%)		F1(%)	
Models	Z_{set}	T_{set}	Z_{set}	T_{set}
Vo and Zhang (2015)	69.6	71.1	65.6	69.9
Tang et al. (2015)	/	71.5	/	69.5
Zhang et al. (2016)	71.9	72.0	69.6	70.9
Liu and Zhang (2017)	73.5	72.4	70.6	70.5

- Syntax information should help improve targeted sentiment analysis
- Purpose: how to utilize the syntax information properly

• Directly using parser output suffer noise and error propagation

Model Structure

Model Structure

POS-tagging model

POS-tagging model

POS-tagging model

$W_1 \qquad W_2$

Our Method

Dependency model

Timothy Dozat and Christopher D Manning. 2016. Deep biaffine attention for neural dependency pars-ing. arXiv preprint arXiv:1611.01734.

• Dependency model

Timothy Dozat and Christopher D Manning. 2016. Deep biaffine attention for neural dependency pars-ing. *arXiv preprint arXiv:1611.01734*.

Dependency model

Timothy Dozat and Christopher D Manning. 2016. Deep biaffine attention for neural dependency pars-ing. *arXiv preprint arXiv:1611.01734*.

Outline

- Background
- Our Method
- Experiments and Results
- Conclusion

- Dataset
 - PTB3 [standard splits]
 - Z-Set [Zhang et al. (2016)]
 - T-Set [Tang et al. (2015)]

		Total	Pos	Neg	Neu
Tset	Train	6248	1561	1560	3127
1-501	Test	692	173	173	346
	Train	9489	2416	2384	4689
Z-set	Dev	1036	255	272	509
	Test	1170	294	295	581

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016. Gated neural networks for targeted sentiment analysis. In AAAI. pages 3087–3093. Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. 2015. Effective lstms for target-dependent sentiment classification. In COLING. pages 3298–3307.

- Dataset
 - Test Set sentence length distribution

• The Results of Bottom syntactic Model(Pre-trained part)

Mode	els	Acc.(%)	F1(%)	UAS	LAS
POS-	tagging	92.4	91.6	/	/
Norn	nal Dep.	/	/	95.6	93.8
No-P	OS Dep.	/	/	94.3	92.7

• Results of test set with different implicit syntax features

	Acc.(%)		F1(%)	
Models	Z_{set}	T_{set}	Z_{set}	T_{set}
Baseline	73.0	71.7	70.2	70.1
$+ lm_{pos}$ [a]	73.5	72.4	71.2	70.4
$+ lt_{pos}$ [b]	73.2	72.0	70.8	70.2
$+ lm_{pos}\<_{pos}$ [c]	73.9	72.5	71.4	70.7
$+ lm_{dep}$	73.5	72.2	70.7	70.6
$+ mlp_{dep}$	74.0	72.6	71.3	70.9
$+ lm_{dep} \& mlp_{dep}$	74.1	72.7	71.7	71.3
$+ lm_{dep}^*$ [d]	73.3	72.4	70.9	70.5
$+ mlp_{dep}^*$ [e]	74.2	72.8	71.3	70.5
$+ lm_{dep}^* \&mlp_{dep}^*$ [f]	74.3	72.8	71.8	71.4

• F1 values of each polarity on test set

		Pos	Neg	Neu
	Baseline	61.64	69.83	78.67
Z-Set	POS	61.43	70.17	78.97
	$DEP_{[2]}$	61.14	71.14	79.63
	Baseline	62.57	69.36	75.70
T-Set	POS	61.84	69.41	77.62
	$DEP_{[2]}$	62.74	70.31	78.42

• Test set F1 values against sentence length(Z-Dataset)

Conclusion

- Implicit syntax features by neural stacking method can obviously help enhance the targeted sentiment analysis.
- POS-tagging features can carry more positive implicit information that help short sentence.
- Dependency implicit features show robust and stable in different sentence length.

Thank you!

Code is available at <u>https://github.com/CooDL/TSSSF</u>