
Implicit	Syntax	for	Targeted	
Sentiment	Analysis	

Yuze	Gao,	Yue	Zhang	and	Tong	Xiao

November	27,	2017,	TaiWan

Outline

• Background
• Our Method
• Experiments and Results
• Conclusion

Outline

• Background
• Our Method
• Experiments and Results
• Conclusion

Background

• Targeted	Sentiment	Analysis
• Given	a	sentence	sn with	target	words	tm ,	we	judge	the	sentiment(positive, negative,
neutral) of	the	sentence	towards	the	target	words	tm .	

• Target	Context	(Duy-Tin	Vo	and	Yue	Zhang	2015)

The food in Cafe Owl is more delicious than that in Cathy’s	
.

sn

tm

Positive

Left Context Right Context

Background

• Baselines:
• Vo	and	Zhang	(2015)	

Duy-Tin	Vo	and	Yue	Zhang.	2015.	Target-dependent	twitter	sentiment	classification	with	rich	automatic	features.	In	
IJCAI.	pages	1347–1353	

Background

• Baselines:
• Zhang et al. (2016)	

Meishan Zhang,	Yue	Zhang,	and	Duy-Tin	Vo.	2016.	Gated	neural	networks	for	targeted	sentiment	analy- sis.	In	AAAI.	
pages	3087–3093.	

Background

• Baselines:
• Tang et al. (2016)	

Duyu Tang,	Bing	Qin,	Xiaocheng Feng,	and	Ting	Liu.	2016.	Effective	lstms for	target-dependent	sentiment	classification.	
In	COLING.	pages	3298–3307.	

Background

• Baselines:
• Liu and Zhang (2017)	

Jiangming Liu	and	Yue	Zhang.	2017.	Attention	mod- eling for	targeted	sentiment.	EACL	2017	page	572.	

Background

• Baselines:
• Results

Acc.(%) F1(%)
Models Zset Tset Zset Tset

Vo and Zhang (2015) 69.6 71.1 65.6 69.9
Tang et al. (2015) / 71.5 / 69.5
Zhang et al. (2016) 71.9 72.0 69.6 70.9
Liu and Zhang (2017) 73.5 72.4 70.6 70.5

Table 7: Test set results with different syntactic
features, the features with ⇤ means they are built
from the no-POS dependency syntax model

we refer to the first BiLSTM layer as 1, and the
last BiLSTM layer as 4. Top 2 indicates the
layer3 & layer4. Without fast forward connec-
tions, the results are 73.24%. With setting 1 to 4,
the accuracies increase from 73.24% to 73.32%,
73.67%, 73.88% and 73.96%, respectively. Fi-
nally, the best results are obtained with 74.17%.
We thus use the settings layer4 for final tests, for
a nice balance of efficiency and accuracy.

3.5 Results
We conduct final tests on the test set of Z-Set
and T-Set, respectively investigating two ques-
tions. First, we verify whether this kind implicit
features enhance the accuracy of twitter target-
dependent sentiment analysis. Second, we mea-
sure how syntax affect target-dependent sentiment
analysis results.

First, we compare the effects of different fea-
tures on target target-dependent sentiment analy-
sis. We take the top model with only word em-
bedding inputs as our baseline system. The results
are listed in Table 7. We can see that the syntac-
tic features contribute to enhancing the accuracy
of target-dependent sentiment analysis. Compared
with our baseline on both test-set, we obtain an in-
crease of Acc. by 1.3 points (p < 0.01) on Z-Set
and 1 point (p < 0.05) on T-Set. For the POS-
tagging model, the lmpos feature provides more
information than the ltpos feature, and the ltpos has
little impact in their combination case.

The dependency model features work better
than the POS-tag features. lmdep is weaker than
mlpdep, since mlpdep contains more learned and
specific features, which provide the model with
sentence level dependency structure.

Second, we separately test the effect of features
made with respect to different sentence lengths
and sentiment polorities. As two datasets have dif-
ferent max sentence lengths (Z-set 84 words, T-set
44 words), we focus on the length range [10,40]

Pos Neg Neu

Z-Set
Baseline 61.64 69.83 78.67
POS[c] 61.43 70.17 78.97
DEP[f] 61.14 71.14 79.63

T-Set
Baseline 62.57 69.36 75.70
POS[c] 61.84 69.41 77.62
DEP[f] 62.74 70.31 78.42

Table 8: F1 values(%) of each polarity on test set
of Z-Set, T-Set, the POS[c] and DEP[f] indicate
the features listed in Table 7

10 15 20 25 30 35 40

71

72

a
b
c
d
e
f

Figure 7: Test-set F1 against sentence length (Z-
Set), a,b,c,d,e,f indicate the features listed in Table
7, respectively

and treat the sentence with length 10- and 40+
as 10 and 40, respectively. The results are listed
in Table 8, Figure 7 (Here we use the test set of
Zhang et al. (2016)). The POS-tags features (a,b,c
in Table 7) have advantages in short sentence (10-
15 words), it gains a significant higher than the
dependency features. In contrast, the dependency
features (d,e,f in Table 7) show larger contribution
on longer sentence (30-40 words).

Finally, our model gives a F1 score of 71.8%
and 71.4% on both test sets, respectively, which
are the best reported results so far.

3.6 Analysis

The results show that features have different con-
tributions to enhance the accuracy of targeted sen-
timent classification. The bottom syntax model
output contains different syntactic information.
Using them as features do contribution to the top
model gain the information about sentence struc-
ture or word interrelation.

The POS-tagging model features perform well
on short sentences. We believe that a POS-tagging
model feature vector contains relation between a
present word and its POS context words. This
matches its adjacent words, helping model gain lo-
cal phrase-level structure information. For exam-

Background

• Syntax information should help improve targeted sentiment analysis
• Purpose: how to utilize the syntax information properly

Syntax
Information

Sentiment
Analysis

explicit methods

implicit methods Sentiment

OR

Background

• Directly using parser output suffer noise and error propagation

Syntax
Information

Sentiment
Analysis

explicit methods

implicit methods Sentiment

OR

Our Method	

• Model Structure

xb

Hidden Vectors fb
(Implicit Syntax)

xt
*

xt

Top sentiment Model

Input [web; wet; posb]

Bottom syntactic Model

Our Method	

• Model Structure

xb

Hidden Vectors fb
(Implicit Syntax)

xt
*

xt

Top sentiment Model

Input [web; wet; posb]

Bottom syntactic ModelPre-trained

Our Method	

• POS-tagging model

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k1 , (1)

where S
0 is the k1-layer BiLSTM hidden

state output. A classifier is then used to weight the
hidden state of each word in S

0 and derive the la-
bel. Here W1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
0
+ b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

0
+ b (the labels’ logits) will act

as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS� dependency with bottom
input web � posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S

0 of the words
in sentence S, here xi = we

i
b�posib, hi =

 �
hi�
�!
hi ,

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S0. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep

= MLP([h1, h2, ..., hn])
k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S

0
head = {headji , i, j 2 [1, n]}:

head
j
i = Classifier(head

i
arc, head

j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and head

j
i ,

and we obtain the rel relation label set
S

0
rel = {relji , i, j 2 [1, n]}:

rel
j
i = Classifier(head

i
arc, head

j
dep, head

j
i),(6)

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k1 , (1)

where S
0 is the k1-layer BiLSTM hidden

state output. A classifier is then used to weight the
hidden state of each word in S

0 and derive the la-
bel. Here W1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
0
+ b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

0
+ b (the labels’ logits) will act

as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS� dependency with bottom
input web � posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S

0 of the words
in sentence S, here xi = we

i
b�posib, hi =

 �
hi�
�!
hi ,

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S0. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep

= MLP([h1, h2, ..., hn])
k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S

0
head = {headji , i, j 2 [1, n]}:

head
j
i = Classifier(head

i
arc, head

j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and head

j
i ,

and we obtain the rel relation label set
S

0
rel = {relji , i, j 2 [1, n]}:

rel
j
i = Classifier(head

i
arc, head

j
dep, head

j
i),(6)

Our Method	

• POS-tagging model

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …
Implicit POS-tag features

Our Method	

• POS-tagging model

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Explicit POS-tag features

Our Method	

• Dependency model

W T W T W T

Bi-LSTM layersh1 h2 hn-1 hn

MLP MLP MLP MLPMLP layers

A D A DA D A D

CLF CLF CLF CLF……

Learned Fetures

S11:n S21:n Sn-11:n Sn1:n……

W TFeatures

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k1 , (1)

where S
0 is the k1-layer BiLSTM hidden

state output. A classifier is then used to weight the
hidden state of each word in S

0 and derive the la-
bel. Here W1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
0
+ b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

0
+ b (the labels’ logits) will act

as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS� dependency with bottom
input web � posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S

0 of the words
in sentence S, here xi = we

i
b�posib, hi =

 �
hi�
�!
hi ,

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S0. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep

= MLP([h1, h2, ..., hn])
k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S

0
head = {headji , i, j 2 [1, n]}:

head
j
i = Classifier(head

i
arc, head

j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and head

j
i ,

and we obtain the rel relation label set
S

0
rel = {relji , i, j 2 [1, n]}:

rel
j
i = Classifier(head

i
arc, head

j
dep, head

j
i),(6)

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k1 , (1)

where S
0 is the k1-layer BiLSTM hidden

state output. A classifier is then used to weight the
hidden state of each word in S

0 and derive the la-
bel. Here W1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
0
+ b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

0
+ b (the labels’ logits) will act

as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS� dependency with bottom
input web � posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S

0 of the words
in sentence S, here xi = we

i
b�posib, hi =

 �
hi�
�!
hi ,

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S0. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep

= MLP([h1, h2, ..., hn])
k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S

0
head = {headji , i, j 2 [1, n]}:

head
j
i = Classifier(head

i
arc, head

j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and head

j
i ,

and we obtain the rel relation label set
S

0
rel = {relji , i, j 2 [1, n]}:

rel
j
i = Classifier(head

i
arc, head

j
dep, head

j
i),(6)

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k1 , (1)

where S
0 is the k1-layer BiLSTM hidden

state output. A classifier is then used to weight the
hidden state of each word in S

0 and derive the la-
bel. Here W1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
0
+ b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

0
+ b (the labels’ logits) will act

as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS� dependency with bottom
input web � posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S

0 of the words
in sentence S, here xi = we

i
b�posib, hi =

 �
hi�
�!
hi ,

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S0. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep

= MLP([h1, h2, ..., hn])
k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S

0
head = {headji , i, j 2 [1, n]}:

head
j
i = Classifier(head

i
arc, head

j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and head

j
i ,

and we obtain the rel relation label set
S

0
rel = {relji , i, j 2 [1, n]}:

rel
j
i = Classifier(head

i
arc, head

j
dep, head

j
i),(6)

w1

bilstm layers

w2 wn-1 wn

… classifier layer …

… inputs layer …
… words …

t1 t2 tn-1 tn

l1 l2 ln-1 ln

h1

x1

h2

x2

hn-1

xn-1

hn

xn

… tags …

Figure 3: POS-tagging model

2.2 Syntactic Sub Models

The twitter data suffer poor accuracies by syntax
parsers in contrast with news data such as PTB.
Directly using explicit twitter syntax features has
an error propagation problem. We use a pre-
trained syntax model to turn raw word embeddings
into implicit syntactic features. Both a POS model
and a dependency model are used to utilize syntax
features.

2.2.1 POS Model
We employ a simplified bi-directional LSTM
(BiLSTM) POS-tagging model (see Figure 3),
trained on PTB3 (Toutanova et al. 2003; Labeau
et al. 2015). As for every sentence sequence
w1, w2, ..., wn, its corresponding word embedding
sequence x1, x2, ..., xn, we integrate its word
embedding into a k1-layer BiLSTM:

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k1 , (1)

where S
0 is the k1-layer BiLSTM hidden

state output. A classifier is then used to weight the
hidden state of each word in S

0 and derive the la-
bel. Here W1 is the weight matrix and b is the bias:

Labels = Classifier(W1S
0
+ b), (2)

The BiLSTM hidden layer h1, h2, ..., hn and
the result of W1S

0
+ b (the labels’ logits) will act

as our implicit syntactic features.

2.2.2 Dependency Model
In this model, we use a dependency parser to re-
place the POS-tagging model in Section 2.2.1.
In particular, the model of Dozat and Manning
(2016) is used, which fuses several BiLSTM lay-
ers to encode the input sentence before doing

W T W TW T W T……

……h1 h2 hn-1 hn

MLP MLP MLP MLP……

A D A DA D A D

CLF CLF CLF CLF……

……

S11:n S21:n Sn-11:n Sn1:n……

Figure 4: Dependency parsing model

bi-affine attention to learn dependency arcs be-
twtween different words.

Two different dependency models are trained:
one being a POS� dependency with bottom
input web � posb, one being no-POS dependency
model with just word embedding web. , given
a sentence sequence w1, w2, ..., wn, it integrates
the word embedding web(W) and POS-tag
embedding posb(T) into a k2-layer BiLSTM
and generate the LSTM states S

0 of the words
in sentence S, here xi = we

i
b�posib, hi =

 �
hi�
�!
hi ,

S
0
= [h1, h2, ..., hn]

= BiLSTM([x1, x2, ..., xn])
k2 , (3)

MLP (Multilayer Perceptron) layers are used to
reduce the dimension size and build features from
the BiLSTM state output S0. Here it gives four
kind features: headarc, headdep, relarc, reldep:

headarc, headdep, relarc, reldep

= MLP([h1, h2, ..., hn])
k3 , (4)

Based on the features, a bi-affine classifier gives
every word in the sentence S a corresponding
dependency head using the feature headarc(A)
and headdep(D). We obtain the head relation set
S

0
head = {headji , i, j 2 [1, n]}:

head
j
i = Classifier(head

i
arc, head

j
dep) (5)

Another bi-affine classifier is used to clas-
sify the dependency relation based on the
feature headarc(A), headdep(D) and head

j
i ,

and we obtain the rel relation label set
S

0
rel = {relji , i, j 2 [1, n]}:

rel
j
i = Classifier(head

i
arc, head

j
dep, head

j
i),(6)

Timothy	Dozat and	Christopher	D	Manning.	2016.	Deep	biaffine attention	for	neural	dependency	pars- ing.	arXiv preprint	
arXiv:1611.01734	.	

Our Method	

• Dependency model

Implicit dependency features

W T W T W T

Bi-LSTM layersh1 h2 hn-1 hn

MLP MLP MLP MLPMLP layers

A D A DA D A D

CLF CLF CLF CLF……

Learned Fetures

S11:n S21:n Sn-11:n Sn1:n……

W TFeatures

Timothy	Dozat and	Christopher	D	Manning.	2016.	Deep	biaffine attention	for	neural	dependency	pars- ing.	arXiv preprint	
arXiv:1611.01734	.	

Our Method	

• Dependency model

Implicit dependency features

W T W T W T

Bi-LSTM layersh1 h2 hn-1 hn

MLP MLP MLP MLPMLP layers

A D A DA D A D

CLF CLF CLF CLF……

Learned Fetures

S11:n S21:n Sn-11:n Sn1:n……

W TFeatures

Timothy	Dozat and	Christopher	D	Manning.	2016.	Deep	biaffine attention	for	neural	dependency	pars- ing.	arXiv preprint	
arXiv:1611.01734	.	

Our Method	

• Top Sentiment Model

…… b w…… ……

h1 h2 ht1 htm hn-1 hn

⊕ ⊕ ⊕ ⊕
ht

⦿

Classifier

P

hi hj

⊕ ⊕

α1 αi αn-1 αn…… ……α2 αj

V1 V2 Vi Vj Vn-1 Vn

∑(V1:Vn)

⦿⦿ ⦿ ⦿ ⦿

b wb wb wb wb wb w b w

Bi-LSTM Layers

Implicit Features and Word-embeddings

b w ……b w b w b w b w b w…… ……

h1 h2 ht1 htm hn-1 hn

� � � �ht

h1 h2 hn-1 hn……

α1 α2 αn-1 αn……

Sα’

�
�

� �

Classifier P

Figure 5: Target-dependent sentiment analysis
with attention, shadow parts donate the attention
part in a sentence

Using the two classifiers, we obtain the depen-
dency root and relation between every two words
in the sentence S. We pre-train the dependency
parser model with 4 bi-directional LSTM layers
and 2 layers of MLP, and use its intermediate out-
put (the MLP output vector) as implicit syntactic
feature inputs to the top sentiment model.

The normal dependency syntax model shares
the same network frame with the no-POS depen-
dency model. They have slight differences in the
classifier. Both models are end-to-end denpen-
dency parsers with different initial inputs. We
choose the same output (Bi-LSTM hidden vector
and MLP vector) of the two models as implicit
syntactic features.

2.3 Target-dependent Sentiment Model
We use the attention-based model of Liu and
Zhang (2017) as our top level model. The overall
structure is shown in Figure 5. Given a sentence,
it first uses several BiLSTM layers to learn its
syntactic features, and then an attention layer is
used to select the relative wegihts of the words
according to the target entity over the untargeted
words in the whole sentence (Bahdanau et al.
2014; Yang et al. 2016). In particular, for a target
word, it applies the target word hidden vector to
find a weight forevery word (except the target
words) in the sentence (see Figure 5). The model
also uses a BiLSTM to represent the feature
layer from bottom syntactic model fb(b) and the
word embedding wet(w) of a word sequence
w1, w2, ..., wn as the hidden vector of each word.

[h1, h2, ..., hn] = BiLSTM([r1, r2, ..., rn])
k4 ,(7)

where ri = f
i
b � we

i
t and k4 is the BiLSTM

layer number.
The target phrase words ht1 , ht2 , ..., htm are

represented as one vector ht(ht /2 [h1, hn]). It
is the average of the target phrase words hidden

vectors, ht = 1
m

mP
i=1

hti .

We build a vanilla attention model by calcu-
lating a weight value ↵i for each word in the
sentence. The sentence S then can be represented
as follows:

S
0
↵ = Attention([h1, h2, ..., hn], ht)

=

nP
i=1

↵ihi, (8)

where ↵i = exp(�i)/
nP

j=1
exp(�j).

The weight scores �i are calculated by using
target representation ht and each word hidden
vector representation in the sentence,

�i = U
T
tanh(W2 · [hi : ht] + b1), (9)

The sentence representation S
0
↵ is used to

predict the probability vector P sentiment labels
on target by:

P = Classifier(W3 · S0
↵ + b2) (10)

2.4 Training

Our training procedure consists of two steps, one
being to pre-train the bottom syntactic models, the
other being to apply the pre-trained bottom syn-
tactic model and train the top sentiment analysis
model.

All models are trained by minimizing the sum
of cross-entropy loss and a L2 regularization loss
of all trainable weights �W .

loss =
1
n

nP
i
�(yi, y

0
i) +

�
2 ||�W ||2 (11)

The model feature inputs (word embeddings,
POS-tag embeddings) are the sum of a trainable
embedding and a pre-trained (or learned) embed-
ding. All the weight matrix will be initialized
with an orthogonal loss less than 1e

�6.
We choose different intermediate outputs of dif-

ferent bottom level syntax models. For POS-
tagging model, we use the BiLSTM hidden out-
put (lmpos) and POS-tags vector before softmax
(ltpos). For the dependency sub model, we utilize

b w ……b w b w b w b w b w…… ……

h1 h2 ht1 htm hn-1 hn

� � � �ht

h1 h2 hn-1 hn……

α1 α2 αn-1 αn……

Sα’

�
�

� �

Classifier P

Figure 5: Target-dependent sentiment analysis
with attention, shadow parts donate the attention
part in a sentence

Using the two classifiers, we obtain the depen-
dency root and relation between every two words
in the sentence S. We pre-train the dependency
parser model with 4 bi-directional LSTM layers
and 2 layers of MLP, and use its intermediate out-
put (the MLP output vector) as implicit syntactic
feature inputs to the top sentiment model.

The normal dependency syntax model shares
the same network frame with the no-POS depen-
dency model. They have slight differences in the
classifier. Both models are end-to-end denpen-
dency parsers with different initial inputs. We
choose the same output (Bi-LSTM hidden vector
and MLP vector) of the two models as implicit
syntactic features.

2.3 Target-dependent Sentiment Model
We use the attention-based model of Liu and
Zhang (2017) as our top level model. The overall
structure is shown in Figure 5. Given a sentence,
it first uses several BiLSTM layers to learn its
syntactic features, and then an attention layer is
used to select the relative wegihts of the words
according to the target entity over the untargeted
words in the whole sentence (Bahdanau et al.
2014; Yang et al. 2016). In particular, for a target
word, it applies the target word hidden vector to
find a weight forevery word (except the target
words) in the sentence (see Figure 5). The model
also uses a BiLSTM to represent the feature
layer from bottom syntactic model fb(b) and the
word embedding wet(w) of a word sequence
w1, w2, ..., wn as the hidden vector of each word.

[h1, h2, ..., hn] = BiLSTM([r1, r2, ..., rn])
k4 ,(7)

where ri = f
i
b � we

i
t and k4 is the BiLSTM

layer number.
The target phrase words ht1 , ht2 , ..., htm are

represented as one vector ht(ht /2 [h1, hn]). It
is the average of the target phrase words hidden

vectors, ht = 1
m

mP
i=1

hti .

We build a vanilla attention model by calcu-
lating a weight value ↵i for each word in the
sentence. The sentence S then can be represented
as follows:

S
0
↵ = Attention([h1, h2, ..., hn], ht)

=

nP
i=1

↵ihi =
nP

i=1
Vi

where ↵i = exp(�i)/
nP

j=1
exp(�j).

The weight scores �i are calculated by using
target representation ht and each word hidden
vector representation in the sentence,

�i = U
T
tanh(W2 · [hi : ht] + b1), (9)

The sentence representation S
0
↵ is used to

predict the probability vector P sentiment labels
on target by:

P = Classifier(W3 · S0
↵ + b2) (10)

2.4 Training

Our training procedure consists of two steps, one
being to pre-train the bottom syntactic models, the
other being to apply the pre-trained bottom syn-
tactic model and train the top sentiment analysis
model.

All models are trained by minimizing the sum
of cross-entropy loss and a L2 regularization loss
of all trainable weights �W .

loss =
1
n

nP
i
�(yi, y

0
i) +

�
2 ||�W ||2 (11)

The model feature inputs (word embeddings,
POS-tag embeddings) are the sum of a trainable
embedding and a pre-trained (or learned) embed-
ding. All the weight matrix will be initialized
with an orthogonal loss less than 1e

�6.
We choose different intermediate outputs of dif-

ferent bottom level syntax models. For POS-
tagging model, we use the BiLSTM hidden out-
put (lmpos) and POS-tags vector before softmax
(ltpos). For the dependency sub model, we utilize

b w ……b w b w b w b w b w…… ……

h1 h2 ht1 htm hn-1 hn

� � � �ht

h1 h2 hn-1 hn……

α1 α2 αn-1 αn……

Sα’

�
�

� �

Classifier P

Figure 5: Target-dependent sentiment analysis
with attention, shadow parts donate the attention
part in a sentence

Using the two classifiers, we obtain the depen-
dency root and relation between every two words
in the sentence S. We pre-train the dependency
parser model with 4 bi-directional LSTM layers
and 2 layers of MLP, and use its intermediate out-
put (the MLP output vector) as implicit syntactic
feature inputs to the top sentiment model.

The normal dependency syntax model shares
the same network frame with the no-POS depen-
dency model. They have slight differences in the
classifier. Both models are end-to-end denpen-
dency parsers with different initial inputs. We
choose the same output (Bi-LSTM hidden vector
and MLP vector) of the two models as implicit
syntactic features.

2.3 Target-dependent Sentiment Model
We use the attention-based model of Liu and
Zhang (2017) as our top level model. The overall
structure is shown in Figure 5. Given a sentence,
it first uses several BiLSTM layers to learn its
syntactic features, and then an attention layer is
used to select the relative wegihts of the words
according to the target entity over the untargeted
words in the whole sentence (Bahdanau et al.
2014; Yang et al. 2016). In particular, for a target
word, it applies the target word hidden vector to
find a weight forevery word (except the target
words) in the sentence (see Figure 5). The model
also uses a BiLSTM to represent the feature
layer from bottom syntactic model fb(b) and the
word embedding wet(w) of a word sequence
w1, w2, ..., wn as the hidden vector of each word.

[h1, h2, ..., hn] = BiLSTM([r1, r2, ..., rn])
k4 ,(7)

where ri = f
i
b � we

i
t and k4 is the BiLSTM

layer number.
The target phrase words ht1 , ht2 , ..., htm are

represented as one vector ht(ht /2 [h1, hn]). It
is the average of the target phrase words hidden

vectors, ht = 1
m

mP
i=1

hti .

We build a vanilla attention model by calcu-
lating a weight value ↵i for each word in the
sentence. The sentence S then can be represented
as follows:

S
0
↵ = Attention([h1, h2, ..., hn], ht)

=

nP
i=1

↵ihi =
nP

i=1
Vi

where ↵i = exp(�i)/
nP

j=1
exp(�j).

The weight scores �i are calculated by using
target representation ht and each word hidden
vector representation in the sentence,

�i = U
T
tanh(W2 · [hi : ht] + b1), (9)

The sentence representation S
0
↵ is used to

predict the probability vector P sentiment labels
on target by:

P = Classifier(W3 · S0
↵ + b2) (10)

2.4 Training

Our training procedure consists of two steps, one
being to pre-train the bottom syntactic models, the
other being to apply the pre-trained bottom syn-
tactic model and train the top sentiment analysis
model.

All models are trained by minimizing the sum
of cross-entropy loss and a L2 regularization loss
of all trainable weights �W .

loss =
1
n

nP
i
�(yi, y

0
i) +

�
2 ||�W ||2 (11)

The model feature inputs (word embeddings,
POS-tag embeddings) are the sum of a trainable
embedding and a pre-trained (or learned) embed-
ding. All the weight matrix will be initialized
with an orthogonal loss less than 1e

�6.
We choose different intermediate outputs of dif-

ferent bottom level syntax models. For POS-
tagging model, we use the BiLSTM hidden out-
put (lmpos) and POS-tags vector before softmax
(ltpos). For the dependency sub model, we utilize

b w ……b w b w b w b w b w…… ……

h1 h2 ht1 htm hn-1 hn

� � � �ht

h1 h2 hn-1 hn……

α1 α2 αn-1 αn……

Sα’

�
�

� �

Classifier P

Figure 5: Target-dependent sentiment analysis
with attention, shadow parts donate the attention
part in a sentence

Using the two classifiers, we obtain the depen-
dency root and relation between every two words
in the sentence S. We pre-train the dependency
parser model with 4 bi-directional LSTM layers
and 2 layers of MLP, and use its intermediate out-
put (the MLP output vector) as implicit syntactic
feature inputs to the top sentiment model.

The normal dependency syntax model shares
the same network frame with the no-POS depen-
dency model. They have slight differences in the
classifier. Both models are end-to-end denpen-
dency parsers with different initial inputs. We
choose the same output (Bi-LSTM hidden vector
and MLP vector) of the two models as implicit
syntactic features.

2.3 Target-dependent Sentiment Model
We use the attention-based model of Liu and
Zhang (2017) as our top level model. The overall
structure is shown in Figure 5. Given a sentence,
it first uses several BiLSTM layers to learn its
syntactic features, and then an attention layer is
used to select the relative wegihts of the words
according to the target entity over the untargeted
words in the whole sentence (Bahdanau et al.
2014; Yang et al. 2016). In particular, for a target
word, it applies the target word hidden vector to
find a weight forevery word (except the target
words) in the sentence (see Figure 5). The model
also uses a BiLSTM to represent the feature
layer from bottom syntactic model fb(b) and the
word embedding wet(w) of a word sequence
w1, w2, ..., wn as the hidden vector of each word.

[h1, h2, ..., hn] = BiLSTM([r1, r2, ..., rn])
k4 ,(7)

where ri = f
i
b � we

i
t and k4 is the BiLSTM

layer number.
The target phrase words ht1 , ht2 , ..., htm are

represented as one vector ht(ht /2 [h1, hn]). It
is the average of the target phrase words hidden

vectors, ht = 1
m

mP
i=1

hti .

We build a vanilla attention model by calcu-
lating a weight value ↵i for each word in the
sentence. The sentence S then can be represented
as follows:

S
0
↵ = Attention([h1, h2, ..., hn], ht)

=

nP
i=1

↵ihi =
nP

i=1
Vi

where ↵i = exp(�i)/
nP

j=1
exp(�j).

The weight scores �i are calculated by using
target representation ht and each word hidden
vector representation in the sentence,

�i = U
T
tanh(W2 · [hi : ht] + b1), (9)

The sentence representation S
0
↵ is used to

predict the probability vector P sentiment labels
on target by:

P = Classifier(W3 · S0
↵ + b2) (10)

2.4 Training

Our training procedure consists of two steps, one
being to pre-train the bottom syntactic models, the
other being to apply the pre-trained bottom syn-
tactic model and train the top sentiment analysis
model.

All models are trained by minimizing the sum
of cross-entropy loss and a L2 regularization loss
of all trainable weights �W .

loss =
1
n

nP
i
�(yi, y

0
i) +

�
2 ||�W ||2 (11)

The model feature inputs (word embeddings,
POS-tag embeddings) are the sum of a trainable
embedding and a pre-trained (or learned) embed-
ding. All the weight matrix will be initialized
with an orthogonal loss less than 1e

�6.
We choose different intermediate outputs of dif-

ferent bottom level syntax models. For POS-
tagging model, we use the BiLSTM hidden out-
put (lmpos) and POS-tags vector before softmax
(ltpos). For the dependency sub model, we utilize

Outline

• Background
• Our Method
• Experiments and Results
• Conclusion

Experiments and Results

• Dataset
• PTB3 [standard	splits]
• Z-Set [Zhang	et	al.	(2016)]
• T-Set [Tang	et	al.	(2015)]

Bottom Syntactic Model
LSTM Size(dblstm) 300
MLP Size (dmlp) 100
LSTM Layers(POS Model) (k1) 2
LSTM Layers(Dep. Model) (k2) 4
LSTM Dropout Rate (drblstm) 0.6
MLP Layers (k3) 2
MLP Dropout Rate (drmlp) 0.67
Batch Size(bb) 1000
Word Embeddings (dbw) 100
POS Embeddings (dpos) 100

Top Sentiment Model
LSTM Size(dtlstm) 200
LSTM Layers(k4) 1
Word Embedding(dtw) 200
Batch Size(bt) 200
LSTM Dropout Rate(drtlstm) 0.5

Same Parameters
Word Minimum Occurance 3
Learning Rate(lr) 0.02
Learning Rate Decay Rate(lrspeed) 0.75
Decay Steps(lrdistance) 1500
Random Seed 1314
Train Iterations 30000

Table 2: Hyper-parameters values

the last BiLSTM layer hidden feature(lmdep) and
the MLP layer output (mlpdep) optionally.

3 Experiments

We evaluate the performances of our model and
compare them with state-of-the-art results using
two standard datasets for target-dependent senti-
ment (Zhang et al., 2016; Tang et al., 2015). The
PTB3 dataset is used to pre-train our bottom level
syntax models.

3.1 Data
We conduct experiments on two datasets, one be-
ing the training/dev/test dataset of Zhang et al.
(2016) (Z-Set), which consists of the MPQA cor-
pus1 and Mitchell et al. (2013)’s corpus2, the other
being the dataset of the benchmark training/test
dataset of Tang et al. (2015) (T-Set), we label these
datasets’ POS-tags with the open parser tools ZPar
(Zhang and Clark, 2011). Two sets of word em-
bedding are used in this experiment: The GloVe3

(Pennington et al., 2014) twitter embedding (100
dimensions) for the bottom model, and the GloVe

1http://mpqa.cs.pitt.edu/corpora/mpqa corpus/
2http://www.m-mitchell.com/code/index.html
3https://nlp.stanford.edu/projects/glove/

Total Pos Neg Neu

T-set Train 6248 1561 1560 3127
Test 692 173 173 346

Z-set
Train 9489 2416 2384 4689
Dev 1036 255 272 509
Test 1170 294 295 581

Table 3: Sentiment Distribution

10 20 30 40

0

100

200

Z-Set
T-Set

Figure 6: Test-set length distribution

twitter word embedding (200 dimensions) for the
top target-dependent sentiment analysis model.
Also, due to lack of syntactically labelled twitter
data, we used the PTB3 dataset to pre-train our
bottom models. We follow the standard splits of
PTB3, using 2-21 as the bottom model training
data, section 22 for the development set and 23
as the test set.

We calculate statistics on sentiment polorities
and lengths for both datasets. Table 3 shows the
same percentage of three sentiment labels and Fig-
ure 6 shows length distribution on the test sets.

3.2 Trainning Settings
First, we use the PTB3 dataset with the stan-
dard split method pre-train the POS syntax model
and dependency syntax model with the hyper-
parameters listed in Table 2. A best model on the
devset is saved for the neural stacking bottom syn-
tax model.

Once obtaining the pre-trained bottom syntax
model, we build the top sentiment model based on
intermediate output syntax model features fb and
top word embedding wet.

3.3 Hyper-parameters
Embedding Size: Our embedding is a superposi-
tion of a trainable and a pre-trained word embed-
ding. We fixed the word embedding dimension of
web and wet to 100 and 200, respectively to match
two pre-trained GloVe word embeddings set from
Pennington et al. (2014).

Meishan Zhang,	Yue	Zhang,	and	Duy-Tin	Vo.	2016.	Gated	neural	networks	for	targeted	sentiment	analysis.	In	AAAI.	pages	3087–3093.	
Duyu Tang,	Bing	Qin,	Xiaocheng Feng,	and	Ting	Liu.	2015.	Effective	lstms for	target-dependent	sentiment	classification.	In	COLING.	pages	3298–3307.	

Experiments and Results

• Dataset
• Test Set sentence length distribution

Bottom Syntactic Model
LSTM Size(dblstm) 300
MLP Size (dmlp) 100
LSTM Layers(POS Model) (k1) 2
LSTM Layers(Dep. Model) (k2) 4
LSTM Dropout Rate (drblstm) 0.6
MLP Layers (k3) 2
MLP Dropout Rate (drmlp) 0.67
Batch Size(bb) 1000
Word Embeddings (dbw) 100
POS Embeddings (dpos) 100

Top Sentiment Model
LSTM Size(dtlstm) 200
LSTM Layers(k4) 1
Word Embedding(dtw) 200
Batch Size(bt) 200
LSTM Dropout Rate(drtlstm) 0.5

Same Parameters
Word Minimum Occurance 3
Learning Rate(lr) 0.02
Learning Rate Decay Rate(lrspeed) 0.75
Decay Steps(lrdistance) 1500
Random Seed 1314
Train Iterations 30000

Table 2: Hyper-parameters values

the last BiLSTM layer hidden feature(lmdep) and
the MLP layer output (mlpdep) optionally.

3 Experiments

We evaluate the performances of our model and
compare them with state-of-the-art results using
two standard datasets for target-dependent senti-
ment (Zhang et al., 2016; Tang et al., 2015). The
PTB3 dataset is used to pre-train our bottom level
syntax models.

3.1 Data
We conduct experiments on two datasets, one be-
ing the training/dev/test dataset of Zhang et al.
(2016) (Z-Set), which consists of the MPQA cor-
pus1 and Mitchell et al. (2013)’s corpus2, the other
being the dataset of the benchmark training/test
dataset of Tang et al. (2015) (T-Set), we label these
datasets’ POS-tags with the open parser tools ZPar
(Zhang and Clark, 2011). Two sets of word em-
bedding are used in this experiment: The GloVe3

(Pennington et al., 2014) twitter embedding (100
dimensions) for the bottom model, and the GloVe

1http://mpqa.cs.pitt.edu/corpora/mpqa corpus/
2http://www.m-mitchell.com/code/index.html
3https://nlp.stanford.edu/projects/glove/

Total Pos Neg Neu

T-set Train 6248 1561 1560 3127
Test 692 173 173 346

Z-set
Train 9489 2416 2384 4689
Dev 1036 255 272 509
Test 1170 294 295 581

Table 3: Sentiment Distribution

10 20 30 40

0

100

200

Z-Set
T-Set

Figure 6: Test-set length distribution

twitter word embedding (200 dimensions) for the
top target-dependent sentiment analysis model.
Also, due to lack of syntactically labelled twitter
data, we used the PTB3 dataset to pre-train our
bottom models. We follow the standard splits of
PTB3, using 2-21 as the bottom model training
data, section 22 for the development set and 23
as the test set.

We calculate statistics on sentiment polorities
and lengths for both datasets. Table 3 shows the
same percentage of three sentiment labels and Fig-
ure 6 shows length distribution on the test sets.

3.2 Trainning Settings
First, we use the PTB3 dataset with the stan-
dard split method pre-train the POS syntax model
and dependency syntax model with the hyper-
parameters listed in Table 2. A best model on the
devset is saved for the neural stacking bottom syn-
tax model.

Once obtaining the pre-trained bottom syntax
model, we build the top sentiment model based on
intermediate output syntax model features fb and
top word embedding wet.

3.3 Hyper-parameters
Embedding Size: Our embedding is a superposi-
tion of a trainable and a pre-trained word embed-
ding. We fixed the word embedding dimension of
web and wet to 100 and 200, respectively to match
two pre-trained GloVe word embeddings set from
Pennington et al. (2014).

Experiments and Results

• The Results of Bottom syntactic Model(Pre-trained part)

Models Acc.(%) F1(%) UAS LAS
POS-tagging 92.4 91.6 / /
Normal Dep. / / 95.6 93.8
No-POS Dep. / / 94.3 92.7

Table 4: Results for Syntactic Sub Model on PTB3
development set.

Dropout Rate: Dropout wrappers are applied to
both the bottom level syntax model and top level
sentiment model to avoid overfitting and learn bet-
ter features. For the bottom syntax model, we
use the PTB3 dataset to pre-train and tune hyper-
parameters. A dropout rate of ⇠ = 0.6 for the
BiLSTM layer and a softmax classifier layer to
classify the learned features from hidden BiLSTM
vector are used, respectively. Dropout rates of
⇠ = 0.6 and ⇠ = 0.67 are applied to every sec-
ond BiLSTM layer and MLP layer, respectively,
in the dependency model. We gain the best results
(see Table 4) of different bottom syntax models on
the PTB3 dataset.

For the top sentiment model, we use the model
with only top word embedding inputs as our base-
line. Here, the bottom syntactic features fb are
pre-processed with a dropout wrapper of � = 0.5

before being concatenated to the top model word
embedding wet, which is also wrapped with a
dropout of ' = 0.8 for training models.
Training: We tune the hyper-parameters of the
bottom syntax model on the PTB3 development
set and top sentiment on the Z-Set development
set. Words that occur less than a minimum amount
of 3 times are treated as unknown words. Standard
SGD with a decaying learning rate (2e�2) is used
for optimization, where the decay rate (0.75) is
used to reduce the learning rate after each training
iteration step (lrdistance).

lrnew = lr · (lrspeed)totalsteps/lrdistance , (12)

There are several hyper-parameters in our mod-
els. We tune all the model hyper-parameters on
the dev set with grid-search. With a learning rate
of ' = 2e

�2, we did a large parameter iteration
on learning rate decay steps lrdistance, decay rate
lrspeed, batch size (bb&bt) and dropout. The batch
size (bb&bt) has a great impact on model weights
gradient and training speeds, and we choose a
balanced point of 200 and 1000 for top and bot-
tom model respectively. The decaying learning
rate can also help in avoiding early overfitting and

Models Acc.(%)
Baseline 73.24
+lmpos 73.53
+ltpos 73.34
+lmpos<pos 73.81
+mlpdep 74.23
+lmdep 73.96
+lmdep&mlpdep 74.59

Table 5: Dev set accuracies for sentiment sub
model

73 73.5 74 74.5

4
3
2
1

Top 2
Top 3

All

73.96

73.88

73.67

73.32

74.07

74.13

74.17

Table 6: Dev Results on BiLSTM feature layers

large weights optimization. The details of other
hyper-parameters are listed in Table 2.

3.4 Development Experiments

Syntactic features: We measure the efficience of
different syntax features; the results are listed in
Table 5. Within syntactic features, the baseline
system (our implementation of Liu and Zhang
(2017)) gives an accuracy of 73.24%. With only
POS features, the accuracies can reach 74.23%,
which is significantly (p < 0.01 by T-test) higher.
With dependency information, the accuracy
further rises to 74.59%, which is significant
improved by 1.4 points to the baseline. This
shows that syntactic information is indeed useful
for target-dependent sentiment classification.
BiLSTM Layers: We also concatenate the hidden
BiLSTM vector from different layers to construct
a fast forword feature network to build feature
from the dependency model.

lmdep = MLP(CONCAT(lmdep[1 : n])), (13)

here, MLP is used to reduce the concate-
nated lmdep dimensions and (1 <= n <= 4).
A dropout wrapper of � = 0.6 is applied for the
concatenated LSTM vectors lmdep[1 : n].

The results of fast forwards features from dif-
ferent LSTM layer are shown in Tabel 6. Here

Experiments and Results

• Results of test set with different implicit syntax features

Acc.(%) F1(%)
Models Zset Tset Zset Tset

Baseline 73.0 71.7 70.2 70.1
+ lmpos [a] 73.5 72.4 71.2 70.4
+ ltpos [b] 73.2 72.0 70.8 70.2
+ lmpos<pos [c] 73.9 72.5 71.4 70.7
+ lmdep 73.5 72.2 70.7 70.6
+ mlpdep 74.0 72.6 71.3 70.9
+ lmdep&mlpdep 74.1 72.7 71.7 71.3
+ lm

⇤
dep [d] 73.3 72.4 70.9 70.5

+ mlp
⇤
dep [e] 74.2 72.8 71.3 70.5

+ lm
⇤
dep&mlp

⇤
dep [f] 74.3 72.8 71.8 71.4

Table 7: Test set results with different syntactic
features, the features with ⇤ means they are built
from the no-POS dependency syntax model

we refer to the first BiLSTM layer as 1, and the
last BiLSTM layer as 4. Top 2 indicates the
layer3 & layer4. Without fast forward connec-
tions, the results are 73.24%. With setting 1 to 4,
the accuracies increase from 73.24% to 73.32%,
73.67%, 73.88% and 73.96%, respectively. Fi-
nally, the best results are obtained with 74.17%.
We thus use the settings layer4 for final tests, for
a nice balance of efficiency and accuracy.

3.5 Results
We conduct final tests on the test set of Z-Set
and T-Set, respectively investigating two ques-
tions. First, we verify whether this kind implicit
features enhance the accuracy of twitter target-
dependent sentiment analysis. Second, we mea-
sure how syntax affect target-dependent sentiment
analysis results.

First, we compare the effects of different fea-
tures on target target-dependent sentiment analy-
sis. We take the top model with only word em-
bedding inputs as our baseline system. The results
are listed in Table 7. We can see that the syntac-
tic features contribute to enhancing the accuracy
of target-dependent sentiment analysis. Compared
with our baseline on both test-set, we obtain an in-
crease of Acc. by 1.3 points (p < 0.01) on Z-Set
and 1 point (p < 0.05) on T-Set. For the POS-
tagging model, the lmpos feature provides more
information than the ltpos feature, and the ltpos has
little impact in their combination case.

The dependency model features work better
than the POS-tag features. lmdep is weaker than
mlpdep, since mlpdep contains more learned and
specific features, which provide the model with
sentence level dependency structure.

Pos Neg Neu

Z-Set
Baseline 61.64 69.83 78.67
POS[c] 61.43 70.17 78.97
DEP[f] 61.14 71.14 79.63

T-Set
Baseline 62.57 69.36 75.70
POS[c] 61.84 69.41 77.62
DEP[f] 62.74 70.31 78.42

Table 8: F1 values(%) of each polarity on test set
of Z-Set, T-Set, the POS[c] and DEP[f] indicate
the features listed in Table 7

10 15 20 25 30 35 40

71

72

a
b
c
d
e
f

Figure 7: Test-set F1 against sentence length (Z-
Set), a,b,c,d,e,f indicate the features listed in Table
7, respectively

Second, we separately test the effect of features
made with respect to different sentence lengths
and sentiment polorities. As two datasets have dif-
ferent max sentence lengths (Z-set 84 words, T-set
44 words), we focus on the length range [10,40]
and treat the sentence with length 10- and 40+
as 10 and 40, respectively. The results are listed
in Table 8, Figure 7 (Here we use the test set of
Zhang et al. (2016)). The POS-tags features (a,b,c
in Table 7) have advantages in short sentence (10-
15 words), it gains a significant higher than the
dependency features. In contrast, the dependency
features (d,e,f in Table 7) show larger contribution
on longer sentence (30-40 words).

Finally, our model gives a F1 score of 71.8%
and 71.4% on both test sets, respectively, which
are the best reported results so far.

3.6 Analysis

The results show that features have different con-
tributions to enhance the accuracy of targeted sen-
timent classification. The bottom syntax model
output contains different syntactic information.
Using them as features do contribution to the top
model gain the information about sentence struc-
ture or word interrelation.

The POS-tagging model features perform well

Experiments and Results

• F1 values of each polarity on test set

Acc.(%) F1(%)
Models Zset Tset Zset Tset

Jiang et al. (2011) / 63.4 / 63.3
Dong et al. (2014) / 66.3 / 65.9
Vo and Zhang (2015) 69.6 71.1 65.6 69.9
Tang et al. (2015) / 71.5 / 69.5
Zhang et al. (2016) 71.9 72.0 69.6 70.9
Liu and Zhang (2017) 73.5 72.4 70.6 70.5
Baseline 73.0 71.7 70.2 70.1
+ lmpos [a] 73.5 72.4 71.2 70.4
+ ltpos [b] 73.2 72.0 70.8 70.2
+ lmpos<pos [c] 73.9 72.5 71.4 70.7
+ lmdep 73.5 72.2 70.7 70.6
+ mlpdep 74.0 72.6 71.3 70.9
+ lmdep&mlpdep 74.1 72.7 71.7 71.3
+ lm

⇤
dep [d] 73.3 72.4 70.9 70.5

+ mlp
⇤
dep [e] 74.2 72.8 71.3 70.5

+ lm
⇤
dep&mlp

⇤
dep [f] 74.3 72.8 71.8 71.4

Table 7: Test set results with different syntactic
features, the features with ⇤ means they are built
from the no-POS dependency syntax model

we refer to the first BiLSTM layer as 1, and the
last BiLSTM layer as 4. Top 2 indicates the
layer3 & layer4. Without fast forward connec-
tions, the results are 73.24%. With setting 1 to 4,
the accuracies increase from 73.24% to 73.32%,
73.67%, 73.88% and 73.96%, respectively. Fi-
nally, the best results are obtained with 74.17%.
We thus use the settings layer4 for final tests, for
a nice balance of efficiency and accuracy.

3.5 Results

We conduct final tests on the test set of Z-Set
and T-Set, respectively investigating two ques-
tions. First, we verify whether this kind implicit
features enhance the accuracy of twitter target-
dependent sentiment analysis. Second, we mea-
sure how syntax affect target-dependent sentiment
analysis results.

First, we compare the effects of different fea-
tures on target target-dependent sentiment analy-
sis. We take the top model with only word em-
bedding inputs as our baseline system. The results
are listed in Table 7. We can see that the syntac-
tic features contribute to enhancing the accuracy
of target-dependent sentiment analysis. Compared
with our baseline on both test-set, we obtain an in-
crease of Acc. by 1.3 points (p < 0.01) on Z-Set
and 1 point (p < 0.05) on T-Set. For the POS-
tagging model, the lmpos feature provides more
information than the ltpos feature, and the ltpos has

Pos Neg Neu

Z-Set
Baseline 61.64 69.83 78.67
POS 61.43 70.17 78.97
DEP[2] 61.14 71.14 79.63

T-Set
Baseline 62.57 69.36 75.70
POS 61.84 69.41 77.62
DEP[2] 62.74 70.31 78.42

Table 8: F1 values(%) of each polarity on test set
of Z-Set, T-Set, the POS[c] and DEP[f] indicate
the features listed in Table 7

10 15 20 25 30 35 40

71

72

a
b
c
d
e
f

Figure 7: Test-set F1 against sentence length (Z-
Set), a,b,c,d,e,f indicate the features listed in Table
7, respectively

little impact in their combination case.
The dependency model features work better

than the POS-tag features. lmdep is weaker than
mlpdep, since mlpdep contains more learned and
specific features, which provide the model with
sentence level dependency structure.

Second, we separately test the effect of features
made with respect to different sentence lengths
and sentiment polorities. As two datasets have dif-
ferent max sentence lengths (Z-set 84 words, T-set
44 words), we focus on the length range [10,40]
and treat the sentence with length 10- and 40+
as 10 and 40, respectively. The results are listed
in Table 8, Figure 7 (Here we use the test set of
Zhang et al. (2016)). The POS-tags features (a,b,c
in Table 7) have advantages in short sentence (10-
15 words), it gains a significant higher than the
dependency features. In contrast, the dependency
features (d,e,f in Table 7) show larger contribution
on longer sentence (30-40 words).

Finally, our model gives a F1 score of 71.8%
and 71.4% on both test sets, respectively, which
are the best reported results so far.

3.6 Analysis

The results show that features have different con-
tributions to enhance the accuracy of targeted sen-

Experiments and Results

• Test set F1 values against sentence length(Z-Dataset)

Acc.(%) F1(%)
Models Zset Tset Zset Tset

Jiang et al. (2011) / 63.4 / 63.3
Dong et al. (2014) / 66.3 / 65.9
Vo and Zhang (2015) 69.6 71.1 65.6 69.9
Tang et al. (2015) / 71.5 / 69.5
Zhang et al. (2016) 71.9 72.0 69.6 70.9
Liu and Zhang (2017) 73.5 72.4 70.6 70.5
Baseline 73.0 71.7 70.2 70.1
+ lmpos [a] 73.5 72.4 71.2 70.4
+ ltpos [b] 73.2 72.0 70.8 70.2
+ lmpos<pos [c] 73.9 72.5 71.4 70.7
+ lmdep 73.5 72.2 70.7 70.6
+ mlpdep 74.0 72.6 71.3 70.9
+ lmdep&mlpdep 74.1 72.7 71.7 71.3
+ lm

⇤
dep [d] 73.3 72.4 70.9 70.5

+ mlp
⇤
dep [e] 74.2 72.8 71.3 70.5

+ lm
⇤
dep&mlp

⇤
dep [f] 74.3 72.8 71.8 71.4

Table 7: Test set results with different syntactic
features, the features with ⇤ means they are built
from the no-POS dependency syntax model

we refer to the first BiLSTM layer as 1, and the
last BiLSTM layer as 4. Top 2 indicates the
layer3 & layer4. Without fast forward connec-
tions, the results are 73.24%. With setting 1 to 4,
the accuracies increase from 73.24% to 73.32%,
73.67%, 73.88% and 73.96%, respectively. Fi-
nally, the best results are obtained with 74.17%.
We thus use the settings layer4 for final tests, for
a nice balance of efficiency and accuracy.

3.5 Results

We conduct final tests on the test set of Z-Set
and T-Set, respectively investigating two ques-
tions. First, we verify whether this kind implicit
features enhance the accuracy of twitter target-
dependent sentiment analysis. Second, we mea-
sure how syntax affect target-dependent sentiment
analysis results.

First, we compare the effects of different fea-
tures on target target-dependent sentiment analy-
sis. We take the top model with only word em-
bedding inputs as our baseline system. The results
are listed in Table 7. We can see that the syntac-
tic features contribute to enhancing the accuracy
of target-dependent sentiment analysis. Compared
with our baseline on both test-set, we obtain an in-
crease of Acc. by 1.3 points (p < 0.01) on Z-Set
and 1 point (p < 0.05) on T-Set. For the POS-
tagging model, the lmpos feature provides more
information than the ltpos feature, and the ltpos has

Pos Neg Neu

Z-Set
Baseline 61.64 69.83 78.67
POS 61.43 70.17 78.97
DEP[2] 61.14 71.14 79.63

T-Set
Baseline 62.57 69.36 75.70
POS 61.84 69.41 77.62
DEP[2] 62.74 70.31 78.42

Table 8: F1 values(%) of each polarity on test set
of Z-Set, T-Set, the POS[c] and DEP[f] indicate
the features listed in Table 7

10 15 20 25 30 35 40

71

72

a
b
c
d
e
f

Figure 7: Test-set F1 against sentence length (Z-
Set), a,b,c,d,e,f indicate the features listed in Table
7, respectively

little impact in their combination case.
The dependency model features work better

than the POS-tag features. lmdep is weaker than
mlpdep, since mlpdep contains more learned and
specific features, which provide the model with
sentence level dependency structure.

Second, we separately test the effect of features
made with respect to different sentence lengths
and sentiment polorities. As two datasets have dif-
ferent max sentence lengths (Z-set 84 words, T-set
44 words), we focus on the length range [10,40]
and treat the sentence with length 10- and 40+
as 10 and 40, respectively. The results are listed
in Table 8, Figure 7 (Here we use the test set of
Zhang et al. (2016)). The POS-tags features (a,b,c
in Table 7) have advantages in short sentence (10-
15 words), it gains a significant higher than the
dependency features. In contrast, the dependency
features (d,e,f in Table 7) show larger contribution
on longer sentence (30-40 words).

Finally, our model gives a F1 score of 71.8%
and 71.4% on both test sets, respectively, which
are the best reported results so far.

3.6 Analysis

The results show that features have different con-
tributions to enhance the accuracy of targeted sen-

Conclusion

• Implicit syntax features by neural stacking method can obviously help
enhance the targeted sentiment analysis.
• POS-tagging features can carry more positive implicit information that
help short sentence.
• Dependency implicit features show robust and stable in different
sentence length.

Thank you!

Code is available at https://github.com/CooDL/TSSSF

